Placental growth factor and its potential role in diabetic retinopathy and other ocular neovascular diseases
نویسندگان
چکیده
The role of vascular endothelial growth factor (VEGF), including in retinal vascular diseases, has been well studied, and pharmacological blockade of VEGF is the gold standard of treatment for neovascular age-related macular degeneration, retinal vein occlusion and diabetic macular oedema. Placental growth factor (PGF, previously known as PlGF), a homologue of VEGF, is a multifunctional peptide associated with angiogenesis-dependent pathologies in the eye and non-ocular conditions. Animal studies using genetic modification and pharmacological treatment have demonstrated a mechanistic role for PGF in pathological angiogenesis. Inhibition decreases neovascularization and microvascular abnormalities across different models, including oxygen-induced retinopathy, laser-induced choroidal neovascularization and in diabetic mice exhibiting retinopathies. High levels of PGF have been found in the vitreous of patients with diabetic retinopathy. Despite these strong animal data, the exact role of PGF in pathological angiogenesis in retinal vascular diseases remains to be defined, and the benefits of PGF-specific inhibition in humans with retinal neovascular diseases and macular oedema remain controversial. Comparative effectiveness research studies in patients with diabetic retinal disease have shown that treatment that inhibits both VEGF and PGF may provide superior outcomes in certain patients compared with treatment that inhibits only VEGF. This review summarizes current knowledge of PGF, including its relationship to VEGF and its role in pathological angiogenesis in retinal diseases, and identifies some key unanswered questions about PGF that can serve as a pathway for future basic, translational and clinical research.
منابع مشابه
Decrease of Serum Vascular Endothelial Growth Factor, along with its Ocular Level, after the Periocular Injection of Celecoxib and Propranolol in Streptozotocin-induced Diabetic Mouse Model
Background: There is a direct correlation between ocular vascular endothelial growth factor (VEGF) level and progression of pathological outcomes in diabetic retinopathy. In our previous study, the periocular administration of propranolol and celecoxib could significantly reduce ocular VEGF levels in a diabetic mouse model. Here, we investigated the changes of serum VEGF after ...
متن کاملVascular Endothelial Growth Factor Inhibitors for Ocular Indications
Diabetic macular edema (including diabetic retinopathy in persons with macular edema) Macular edema following retinal vein occlusion (RVO) Neovascular (wet) AMD Neovascular glaucoma Pseudoxanthoma elasticum Rare causes of choroidal neovascularization (angioid streaks, choroiditis [including choroiditis secondary to ocular histoplasmosis], idiopathic degenerative myopia, retinal dystrophies, rub...
متن کاملGene Therapies for Neovascular Age-Related Macular Degeneration.
Pathological neovascularization is a key component of the neovascular form (also known as the wet form) of age-related macular degeneration (AMD) and proliferative diabetic retinopathy. Several preclinical studies have shown that antiangiogenesis strategies are effective for treating neovascular AMD in animal models. Vascular endothelial growth factor (VEGF) is one of the main inducers of ocula...
متن کاملPegaptanib sodium for the treatment of age-related macular degeneration.
BACKGROUND Pegaptanib sodium, the first aptamer therapeutic approved for use and the first antiangiogenic agent used to treat ocular neovascular disease, acts by inhibiting the 165 isoform of vascular endothelial growth factor believed primarily responsible for pathologic ocular neovascularization and vascular permeability. OBJECTIVE To briefly present the pharmacology, clinical efficacy and ...
متن کاملMyeloid-Derived Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor Are Dispensable for Ocular Neovascularization—Brief Report
OBJECTIVE Ocular neovascularization (ONV) is a pathological feature of sight-threatening human diseases, such as diabetic retinopathy and age-related macular degeneration. Macrophage depletion in mouse models of ONV reduces the formation of pathological blood vessels, and myeloid cells are widely considered an important source of the vascular endothelial growth factor A (VEGF). However, the imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 96 شماره
صفحات -
تاریخ انتشار 2018